

Development, Characterization and Evaluation of Transition Metal/ Chalcogen Based Cathode Catalysts for PEM Fuel Cells

Stephen Campbell Ballard Power Systems March 29th, 2004

This presentation does not contain any proprietary or confidential information.

Project Overview/Objectives

- To develop a non-precious metal cathode catalyst for PEM fuel cells which is as active and as durable as current PGM based catalysts at a significantly reduced cost.
 - Development of composition and structure
 - Process development (can be scaled up)
 - Evaluation/ demonstration in fuel cells & stacks.

Budget

Project year	Federal	Applicant	Total
1	\$549,267	\$200,300	\$749,567
2	\$529,280	\$82,320	\$611,600
3	\$491,206	\$122,802	\$614,008
Total	\$1,580,139	\$395,036	\$1,975,175

Funding in FY04 is \$400,000 from DOE and \$100,000 from Ballard (20%)

Technical Barriers and Targets

- DOE Technical Barriers for Fuel Cell Components
 - O. Stack Material and Manufacturing Cost
 - P. Durability
- DOE Technical Target for Fuel Cell Stack System for 2010
 - Cost 35 to 45 \$ kW_e⁻¹ depending upon platform
 - Durability 5000 hours (including thermal and realistic drive cycles)

Technical Approach

- To determine the optimum catalyst composition (metal,chalcogen) and structure using well-defined, thin film materials on glassy carbon.
 - Determine best metal, best chalcogen and ratio
 - Determine best structure/ phase of that composition
- To duplicate this structure as well as possible on carbon black using manufacturable processes.
 - Develop aqueous/ thermal process to produce similar structure/ composition at high dispersion on a conductive carbon support
- To optimize the electrode structure in a fuel cell and demonstrate performance and durability.
 - Optimize catalyst loading and Nafion/ catalyst structure in electrode.

Safety Slide

- Work done at UBC uses established laboratory equipment and practices.
- Care is exercised when handling the selenium targets but these will remain enclosed in the vacuum system of the coater.
- Standard safe laboratory practices and procedures are followed.
- In the final phase the catalyst will be tested at Ballard in fuel cells.
- This will be carried out in systems which have undergone rigorous HAZOP during design, build and maintenance.
- This is the only part of the project that will use hydrogen gas.

Project timeline

Phase 1	Phase 2	Phase 3
2/04 - 6/05	6/05 - 6/06	7/06 - 6/07

- Phase 1 Ex-situ thin film matrix
 - 1. Rough screening using Co, Fe, Cr with Se, S
 - 2. Detailed optimization of composition and structure
 - 3. Down-selection of preferred catalyst
- Phase 2 Development of process for manufacture of dispersed catalyst structures.
 - 4. Develop aqueous/ thermal process to make dispersed catalyst.
 - 5. HRTEM characterization with RDE and XPS
 - 6. Delivery of catalyst to Ballard for fuel cell testing
- Phase 3 Fuel cell testing
 - 7. Optimize catalyst structure (loading, Nafion content, etc)
 - 8. Performance and stability assessment
 - 9. Deliver stack for independent evaluation and return.

Technical Accomplishment Summary

- Research staff (post-doctoral fellows and graduate students) are in place and working.
- Glassy carbon substrate has been machined into discs to fit the rotating electrode holder
- Initial baselines using sputtered platinum to be obtained in early April. Data to follow
- Coater modifications completed.
- It is expected to be coating Co_xSe_y thin films by mid-April. Data to follow

Technical Accomplishment Summary

BALLARD®

Two source magnetron sputtering chamber to deposit thin films

Glovebox

power to change the world®

Interactions and Collaborations

- University of British Columbia:-
 - Prof. Bob Parsons; thin film deposition, sputter coating (phase I)
 - Prof. Keith Mitchell; surface science analysis (XPS, Auger, XRD) (phase I)
 - Prof. Dan Bizzotto; electrochemical characterisation (phases I & II)

- Case Western Reserve University:-
 - Prof. Frank Ernst; High resolution transmission electron microscopy (HRTEM) for characterisation of powder catalyst in phase II.

Future Work

For FY 2004

- Develop compositional screening matrix using Co, Cr, Fe and Se.
- Down-select composition with best activity/ stability.
- Fully characterize the structure of the down-selected composition.

FY 2005-2006

- Add sulfur to the screening matrix and determine if better than Se.
- Develop process to make dispersed catalytic material supported on carbon.
- Determine that powder catalyst has similar composition and structure to thin film.
- Deliver down-selected catalyst composition as powder for in-situ fuel cell optimization

Future Work

FY 2007

- In-situ fuel cell optimisation of down-selected powder catalyst.
 - Catalyst loading to meet cost/ performance targets.
 - Optimize catalyst/ ionomer structure for performance and stability.
 - Manufacture cathodes for Mk513 short stack and build stack.
 - Performance and lifetime test to validate catalyst.
 - Deliver stack for independent evaluation.